Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2385, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493170

RESUMEN

Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries. We show that the composition and diversity of fungal, but not bacterial, species is tightly coupled to both forest biotic conditions and a seven-fold variation in tree growth rates and biomass carbon stocks when controlling for the effects of dominant tree type, climate, and other environmental factors. This linkage is particularly strong for symbiotic endophytic and ectomycorrhizal fungi known to directly facilitate tree growth. Since tree growth rates in this system are closely and positively correlated with belowground soil carbon stocks, we conclude that fungal composition is a strong predictor of overall forest carbon storage across the European continent.


Asunto(s)
Micobioma , Carbono , Microbiología del Suelo , Bosques , Árboles/microbiología , Suelo
2.
Glob Chang Biol ; 30(3): e17237, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488024

RESUMEN

Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.


Asunto(s)
Pinus sylvestris , Árboles , Ecosistema , Sequías , Isótopos/análisis , Pinus sylvestris/fisiología , Aclimatación , Agua/fisiología , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis
3.
Tree Physiol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526975

RESUMEN

The loss of leaves and needles in tree crowns and tree mortality are increasing worldwide, mostly as a result of more frequent and severe drought stress. Scots pine (Pinus sylvestris L.) is a tree species that is strongly affected by these developments in many regions of Europe and Asia. So far, changes in metabolic pathways and metabolite profiles in needles and roots on the trajectory towards mortality are unknown, although they could contribute to a better understanding of the mortality mechanisms. Therefore, we linked long-term observations of canopy defoliation and tree mortality with the characterization of the primary metabolite profile in needles and fine roots of Scots pines from a forest site in the Swiss Rhone valley. Our results show that Scots pines are able to maintain metabolic homeostasis in needles over a wide range of canopy defoliation levels. However, there is a metabolic tipping point at around 80-85% needle loss. Above this threshold, many stress-related metabolites (particularly osmoprotectants, defense compounds and antioxidants) increase in the needles, whereas they decrease in the fine roots. If this defoliation tipping point is exceeded, the trees are very likely to die within a few years. The different patterns between needles and roots indicate that mainly belowground carbon starvation impairs key functions for tree survival and suggests that this is an important factor explaining the increasing mortality of Scots pines.

5.
J Exp Bot ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38375924

RESUMEN

Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological vs. hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Pinus sylvestris morpho-anatomical (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation Ψ50, hydraulic conductivity Ks, and tree water deficit TWD) to prolonged changes in soil moisture. We found that low water availability reduced twig water potential and increased TWD during the growing season. Still, the trees showed limited adjustments in most branch-level hydraulic traits (Ψ50 and Ks) and needle anatomy. In contrast, trees acclimated to prolonged irrigation by increasing their crown density and, hence, the canopy water demand. This study demonstrates that despite substantial canopy adjustments, P. sylvestris may be vulnerable to extreme droughts because of limited adjustment potential in their hydraulic system. While sparser canopies reduce the water demand, such shifts take decades to occur under chronic water deficits and might not mitigate short-term extreme drought events.

6.
New Phytol ; 242(3): 960-974, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402527

RESUMEN

The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed 13C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The 13C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively. Drought decreased the transfer of labeled assimilates relative to the irrigation treatment. The 13C label in phospholipid fatty acids (PLFAs) indicated greater drought reduction of assimilate incorporation by fungi (-85%) than by gram-positive (-43%) and gram-negative bacteria (-58%). 13C label incorporation was more strongly reduced for PLFAs (cell membrane) than for microbial cytoplasm extracted by chloroform. This suggests that fresh rhizodeposits are predominantly used for osmoregulation or storage under drought, at the expense of new cell formation. Two weeks after rewetting, 13C enrichment in PLFAs was greater in previously dry than in continuously moist soils. Drought and rewetting effects were greater in beech systems than in pine forest. Belowground C allocation and rhizosphere communities are highly resilient to drought.


Asunto(s)
Pinus , Resiliencia Psicológica , Ecosistema , Rizosfera , Resistencia a la Sequía , Suelo , Bosques , Carbono/metabolismo , Árboles/fisiología , Sequías , Ácidos Grasos/metabolismo , Fosfolípidos/metabolismo , Pinus/metabolismo , Microbiología del Suelo
7.
Plant Physiol ; 194(2): 741-757, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874743

RESUMEN

Progressively warmer and drier climatic conditions impact tree phenology and carbon cycling with large consequences for forest carbon balance. However, it remains unclear how individual impacts of warming and drier soils differ from their combined effects and how species interactions modulate tree responses. Using mesocosms, we assessed the multiyear impact of continuous air warming and lower soil moisture alone or in combination on phenology, leaf-level photosynthesis, nonstructural carbohydrate concentrations, and aboveground growth of young European beech (Fagus sylvatica L.) and Downy oak (Quercus pubescens Willd.) trees. We further tested how species interactions (in monocultures and in mixtures) modulated these effects. Warming prolonged the growing season of both species but reduced growth in oak. In contrast, lower moisture did not impact phenology but reduced carbon assimilation and growth in both species. Combined impacts of warming and drier soils did not differ from their single effects. Under warmer and drier conditions, performances of both species were enhanced in mixtures compared to monocultures. Our work revealed that higher temperature and lower soil moisture have contrasting impacts on phenology vs. leaf-level assimilation and growth, with the former being driven by temperature and the latter by moisture. Furthermore, we showed a compensation in the negative impacts of chronic heat and drought by tree species interactions.


Asunto(s)
Fagus , Quercus , Estaciones del Año , Suelo/química , Carbono , Fagus/fisiología , Quercus/fisiología , Árboles
8.
New Phytol ; 240(1): 127-137, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37483100

RESUMEN

Global warming and droughts push forests closer to their thermal limits, altering tree carbon uptake and growth. To prevent critical overheating, trees can adjust their thermotolerance (Tcrit ), temperature and photosynthetic optima (Topt and Aopt ), and canopy temperature (Tcan ) to stay below damaging thresholds. However, we lack an understanding of how soil droughts affect photosynthetic thermal plasticity and Tcan regulation. In this study, we measured the effect of soil moisture on the seasonal and diurnal dynamics of net photosynthesis (A), stomatal conductance (gs ), and Tcan , as well as the thermal plasticity of photosynthesis (Tcrit , Topt , and Aopt ), over the course of 1 yr using a long-term irrigation experiment in a drought-prone Pinus sylvestris forest in Switzerland. Irrigation resulted in higher needle-level A, gs , Topt , and Aopt compared with naturally drought-exposed trees. No daily or seasonal differences in Tcan were observed between treatments. Trees operated below their thermal thresholds (Tcrit ), independently of soil moisture content. Despite strong Tcan and Tair coupling, we provide evidence that drought reduces trees' temperature optimum due to a substantial reduction of gs during warm and dry periods of the year. These findings provide important insights regarding the effects of soil drought on the thermal tolerance of P. sylvestris.


Asunto(s)
Pinus sylvestris , Pinus , Pinus sylvestris/fisiología , Suelo , Temperatura , Hojas de la Planta/fisiología , Bosques , Fotosíntesis/fisiología , Árboles/fisiología , Sequías , Pinus/fisiología
9.
Front Plant Sci ; 14: 1142595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909442

RESUMEN

Many carbon-related physiological questions in plants such as carbon (C) limitation or starvation have not yet been resolved thoroughly due to the lack of suitable experimental methodology. As a first step towards resolving these problems, we conducted infusion experiments with bonsai trees (Ficus microcarpa) and young maple trees (Acer pseudoplatanus) in greenhouse, and with adult Scots pine trees (Pinus sylvestris) in the field, that were "fed" with 13C-labelled glucose either through the phloem or the xylem. We then traced the 13C-signal in plant organic matter and respiration to test whether trees can take up and metabolize exogenous sugars infused. Ten weeks after infusion started, xylem but not phloem infusion significantly increased the δ13C values in both aboveground and belowground tissues of the bonsai trees in the greenhouse, whereas xylem infusion significantly increased xylem δ13C values and phloem infusion significantly increased phloem δ13C values of the adult pines in the field experiment, compared to the corresponding controls. The respiration measurement experiment with young maple trees showed significantly increased δ13C-values in shoot respired CO2 at the time of four weeks after xylem infusion started. Our results clearly indicate that trees do translocate and metabolize exogenous sugars infused, and because the phloem layer is too thin, and thus xylem infusion can be better operated than phloem infusion. This tree infusion method developed here opens up new avenues and has great potential to be used for research on the whole plant C balance and its regulation in response to environmental factors and extreme stress conditions.

10.
PLoS One ; 18(3): e0282006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36857351

RESUMEN

After reaching phytotoxic levels during the last century, tropospheric ozone (O3) pollution is likely to remain a major concern in the coming decades. Despite similar injury processes, there is astounding interspecific-and sometimes intraspecific-foliar symptom variability, which may be related to spatial and temporal variation in injury dynamics. After characterizing the dynamics of physiological responses and O3 injury in the foliage of hybrid poplar in an earlier study, here we investigated the dynamics of changes in the cell structure occurring in the mesophyll as a function of O3 treatment, time, phytotoxic O3 dose (POD0), leaf developmental stage, and mesophyll layer. While the number of Hypersensitive Response-like (HR-like) lesions increased with higher O3 concentrations and POD0, especially in older leaves, most structural HR-like markers developed after cell death, independent of the experimental factors. The pace of degenerative Accelerated Cell Senescence (ACS) responses depended closely on the O3 concentration and POD0, in interaction with leaf age. Changes in total chlorophyll content, plastoglobuli and chloroplast shape pointed to thylakoid membranes in chloroplasts as being especially sensitive to O3 stress. Hence, our study demonstrates that early HR-like markers can provide reasonably specific, sensitive and reliable quantitative structural estimates of O3 stress for e.g. risk assessment studies, especially if they are associated with degenerative and thylakoid-related injury in chloroplasts from mesophyll.


Asunto(s)
Alcaloides , Ozono , Populus , Toxinas Biológicas , Muerte Celular , Senescencia Celular , Tilacoides
11.
Sci Total Environ ; 872: 162167, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36775147

RESUMEN

Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events. The technology to build a better global forest monitoring network now exists. This white paper addresses the key structural components needed to achieve a novel meta-network. We propose to complement - rather than replace or unify - the existing heterogeneous infrastructure with standardized, quality-assured linking methods and interacting data processing centers to create an integrated forest monitoring network. These automated (research topic-dependent) linking methods in atmosphere, biosphere, and pedosphere play a key role in scaling site-specific results and processing them in a timely manner. To ensure broad participation from existing monitoring sites and to establish new sites, these linking methods must be as informative, reliable, affordable, and maintainable as possible, and should be supplemented by near real-time remote sensing data. The proposed novel meta-network will enable the detection of emergent patterns that would not be visible from isolated analyses of individual sites. In addition, the near real-time availability of data will facilitate predictions of current forest conditions (nowcasts), which are urgently needed for research and decision making in the face of rapid climate change. We call for international and interdisciplinary efforts in this direction.

12.
Tree Physiol ; 43(2): 262-276, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36226588

RESUMEN

Trees have been used for phytoremediation and as biomonitors of air pollution. However, the mechanisms by which trees mitigate nanoparticle pollution in the environment are still unclear. We investigated whether two important tree species, European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.), are able to take up and transport differently charged gold nanoparticles (Au-NPs) into their stem by comparing leaf-to-root and root-to-leaf pathways. Au-NPs were taken up by roots and leaves, and a small fraction was transported to the stem in both species. Au-NPs were transported from leaves to roots but not vice versa. Leaf Au uptake was higher in beech than in pine, probably because of the higher stomatal density and wood characteristics of beech. Confocal (3D) analysis confirmed the presence of Au-NPs in trichomes and leaf blade, about 20-30 µm below the leaf surface in beech. Most Au-NPs likely penetrated into the stomatal openings through diffusion of Au-NPs as suggested by the 3D XRF scanning analysis. However, trichomes were probably involved in the uptake and internal immobilization of NPs, besides their ability to retain them on the leaf surface. The surface charge of Au-NPs may have played a role in their adhesion and uptake, but not in their transport to different tree compartments. Stomatal conductance did not influence the uptake of Au-NPs. This is the first study that shows nanoparticle uptake and transport in beech and pine, contributing to a better understanding of the interactions of NPs with different tree species.


Asunto(s)
Fagus , Nanopartículas del Metal , Pinus sylvestris , Pinus , Fagus/metabolismo , Oro/metabolismo , Árboles , Hojas de la Planta/metabolismo
13.
New Phytol ; 236(2): 547-560, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35842790

RESUMEN

Increased temperature and prolonged soil moisture reduction have distinct impacts on tree photosynthetic properties. Yet, our knowledge of their combined effect is limited. Moreover, how species interactions alter photosynthetic responses to warming and drought remains unclear. Using mesocosms, we studied how photosynthetic properties of European beech and downy oak were impacted by multi-year warming and soil moisture reduction alone or combined, and how species interactions (intra- vs inter-specific interactions) modulated these effects. Warming of +5°C enhanced photosynthetic properties in oak but not beech, while moisture reduction decreased them in both species. Combined warming and moisture reduction reduced photosynthetic properties for both species, but no exacerbated effects were observed. Oak was less impacted by combined warming and limited moisture when interacting with beech than in intra-specific stands. For beech, species interactions had no impact on the photosynthetic responses to warming and moisture reduction, alone or combined. Warming had either no or beneficial effects on the photosynthetic properties, while moisture reduction and their combined effects strongly reduced photosynthetic responses. However, inter-specific interactions mitigated the adverse impacts of combined warming and drought in oak, thereby highlighting the need to deepen our understanding of the role of species interactions under climate change.


Asunto(s)
Fagus , Árboles , Sequías , Fagus/fisiología , Fotosíntesis/fisiología , Suelo , Temperatura
14.
Glob Chang Biol ; 28(9): 3145-3160, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35124879

RESUMEN

Summer droughts strongly affect soil organic carbon (SOC) cycling, but net effects on SOC storage are unclear as drought affects both C inputs and outputs from soils. Here, we explored the overlooked role of soil fauna on SOC storage in forests, hypothesizing that soil faunal activity is particularly drought-sensitive, thereby reducing litter incorporation into the mineral soil and, eventually, long-term SOC storage. In a drought-prone pine forest (Switzerland), we performed a large-scale irrigation experiment for 17 years and assessed its impact on vertical SOC distribution and composition. We also examined litter mass loss of dominant tree species using different mesh-size litterbags and determined soil fauna abundance and community composition. The 17-year-long irrigation resulted in a C loss in the organic layers (-1.0 kg C m-2 ) and a comparable C gain in the mineral soil (+0.8 kg C m-2 ) and thus did not affect total SOC stocks. Irrigation increased the mass loss of Quercus pubescens and Viburnum lantana leaf litter, with greater effect sizes when meso- and macrofauna were included (+215%) than when excluded (+44%). The enhanced faunal-mediated litter mass loss was paralleled by a many-fold increase in the abundance of meso- and macrofauna during irrigation. Moreover, Acari and Collembola community composition shifted, with a higher presence of drought-sensitive species in irrigated soils. In comparison, microbial SOC mineralization was less sensitive to soil moisture. Our results suggest that the vertical redistribution of SOC with irrigation was mainly driven by faunal-mediated litter incorporation, together with increased root C inputs. Our study shows that soil fauna is highly sensitive to natural drought, which leads to a reduced C transfer from organic layers to the mineral soil. In the longer term, this potentially affects SOC storage and, therefore, soil fauna plays a key but so far largely overlooked role in shaping SOC responses to drought.


Asunto(s)
Pinus , Suelo , Carbono , Ciclo del Carbono , Bosques
15.
J Exp Bot ; 73(8): 2576-2588, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35134157

RESUMEN

Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' sensitivity to short-term (day to months) variations of vapor pressure deficit (VPD) and soil moisture is largely unknown. Leaf gas exchange measurements were performed within a long-term (17 years) irrigation experiment in a drought-prone Scots pine-dominated forest in one of Switzerland's driest areas on trees in naturally dry (control), irrigated, and 'irrigation-stop' (after 11 years of irrigation) conditions. Seventeen years of irrigation increased photosynthesis (A) and stomatal conductance (gs) and reduced gs sensitivity to increasing VPD and soil drying. Following irrigation-stop, gas exchange decreased only after 3 years. After 5 years, maximum carboxylation (Vcmax) and electron transport (Jmax) rates in irrigation-stop recovered to similar levels as to before the irrigation-stop. These results suggest that long-term release from soil drought reduces the sensitivity to VPD and that atmospheric constraints may play an increasingly important role in combination with soil drought. Moreover, our study indicates that structural adjustments lead to an attenuation of initially strong leaf-level acclimation to strong multiple-year drought.


Asunto(s)
Sequías , Árboles , Aclimatación , Bosques , Fotosíntesis , Hojas de la Planta/química , Suelo , Agua/análisis
16.
ISME J ; 16(5): 1327-1336, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35001085

RESUMEN

Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.


Asunto(s)
Micorrizas , Ecosistema , Bosques , Micorrizas/genética , Raíces de Plantas/microbiología , Árboles/microbiología
17.
Plant Cell Environ ; 45(1): 23-40, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723383

RESUMEN

Tree stems have been identified as sources of volatile organic compounds (VOCs) that play important roles in tree defence and atmospheric chemistry. Yet, we lack understanding on the magnitude and environmental drivers of stem VOC emissions in various forest ecosystems. Due to the increasing importance of extreme drought, we studied drought effects on the VOC emissions from mature Scots pine (Pinus sylvestris L.) stems. We measured monoterpenes, acetone, acetaldehyde and methanol emissions with custom-made stem chambers, online PTR-MS and adsorbent sampling in a drought-prone forest over the hot-dry summer of 2018 and compared the emission rates and dynamics between trees in naturally dry conditions and under long-term irrigation (drought release). The pine stems were significant monoterpene sources. The stem monoterpene emissions potentially originated from resin, based on their similar monoterpene spectra. The emission dynamics of all VOCs followed temperature at a daily scale, but monoterpene and acetaldehyde emission rates decreased nonlinearly with drought over the summer. Despite the dry conditions, large peaks of monoterpene, acetaldehyde and acetone emissions occurred in late summer potentially due to abiotic or biotic stressors. Our results highlight the potential importance of stem emissions in the ecosystem VOC budget, encouraging further studies in diverse environments.


Asunto(s)
Pinus sylvestris/fisiología , Compuestos Orgánicos Volátiles/análisis , Sequías , Espectrometría de Masas , Metanol/análisis , Monoterpenos/análisis , Monoterpenos/química , Pinus sylvestris/química , Tallos de la Planta/química , Tallos de la Planta/fisiología , Resinas de Plantas/análisis , Resinas de Plantas/química , Sesquiterpenos/análisis , Sesquiterpenos/química , Suelo/química , Suiza , Temperatura , Compuestos Orgánicos Volátiles/química
18.
New Phytol ; 233(1): 194-206, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610146

RESUMEN

The intensity and frequency of droughts events are projected to increase in future with expected adverse effects for forests. Thus, information on the dynamics of tree water uptake from different soil layers during and after drought is crucial. We applied an in situ water isotopologue monitoring system to determine the oxygen isotope composition in soil and xylem water of European beech with a 2-h resolution together with measurements of soil water content, transpiration and tree water deficit. Using a Bayesian isotope mixing model, we inferred the relative and absolute contribution of water from four different soil layers to tree water use. Beech took up more than 50% of its water from the uppermost 5 cm soil layer at the beginning of the 2018 drought, but then reduced absolute water uptake from the drying topsoil by 84%. The trees were not able to quantitatively compensate for restricted topsoil water availability by additional uptake from deeper soil layers, which is related to the fine root depth distribution. Absolute water uptake from the topsoil was restored to pre-drought levels within 3 wk after rewetting. These uptake patterns help to explain both the drought sensitivity of beech and its high recovery potential after drought release.


Asunto(s)
Fagus , Teorema de Bayes , Sequías , Suelo , Agua
19.
Plant Cell Environ ; 44(11): 3552-3570, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34462922

RESUMEN

Monitoring early tree physiological responses to drought is key to understanding progressive impacts of drought on forests and identifying resilient species. We combined drone-based multispectral remote sensing with measurements of tree physiology and environmental parameters over two growing seasons in a 100-y-old Pinus sylvestris forest subject to 17-y of precipitation manipulation. Our goal was to determine if drone-based photochemical reflectance index (PRI) captures tree drought stress responses and whether responses are affected by long-term acclimation. PRI detects changes in xanthophyll cycle pigment dynamics, which reflect increases in photoprotective non-photochemical quenching activity resulting from drought-induced photosynthesis downregulation. Here, PRI of never-irrigated trees was up to 10 times lower (higher stress) than PRI of irrigated trees. Long-term acclimation to experimental treatment, however, influenced the seasonal relationship between PRI and soil water availability. PRI also captured diurnal decreases in photochemical efficiency, driven by vapour pressure deficit. Interestingly, 5 years after irrigation was stopped for a subset of the irrigated trees, a positive legacy effect persisted, with lower stress responses (higher PRI) compared with never-irrigated trees. This study demonstrates the ability of remotely sensed PRI to scale tree physiological responses to an entire forest and the importance of long-term acclimation in determining current drought stress responses.


Asunto(s)
Aclimatación , Botánica/instrumentación , Sequías , Pinus sylvestris/fisiología , Árboles/fisiología , Dispositivos Aéreos No Tripulados , Bosques , Estaciones del Año
20.
Front Plant Sci ; 12: 679852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262582

RESUMEN

With background concentrations having reached phytotoxic levels during the last century, tropospheric ozone (O3) has become a key climate change agent, counteracting carbon sequestration by forest ecosystems. One of the main knowledge gaps for implementing the recent O3 flux-based critical levels (CLs) concerns the assessment of effective O3 dose leading to adverse effects in plants. In this study, we investigate the dynamics of physiological, structural, and morphological responses induced by two levels of O3 exposure (80 and 100 ppb) in the foliage of hybrid poplar, as a function of phytotoxic O3 dose (POD0) and foliar developmental stage. After a latency period driven by foliar ontological development, the gas exchanges and chlorophyll content decreased with higher POD0 monotonically. Hypersensitive response-like lesions appeared early during exposure and showed sigmoidal-like dynamics, varying according to leaf age. At current POD1_SPEC CL, notwithstanding the aforementioned reactions and initial visible injury to foliage, the treated poplars had still not shown any growth or biomass reduction. Hence, this study demonstrates the development of a complex syndrome of early reactions below the flux-based CL, with response dynamics closely determined by the foliar ontological stage and environmental conditions. General agreement with patterns observed in the field appears indicative of early O3 impacts on processes relevant, e.g., biodiversity ecosystem services before those of economic significance - i.e., wood production, as targeted by flux-based CL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...